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Abstract—This paper describes new algorithms for prog- available, covering both inputs and outputs is given by
nostics and anomaly detection on systems that can bethe set(X, ).
described by low dimensional, potentially nonlinear dynam- The hidden stateh, is assumed to correspond to
ics. The methodology relies on estimating the conditional . - . g
probability distribution of the output of the system at a different mode configurations Wlthm.the system. In the
future time given knowledge of the current state of the Case where we assume that the hidden state takes on
system. These conditional probabilities are estimated using discrete valuesh, switches betweenl/ modes, each
a variety of techniques, including bagged neural networks affecting the output dynamicg. In the case of a failure
and kernel methods such as Gaussian Process Regressiorbf the systemh; could move to a failed state, thus also

(GPR) and compare the results against standard methods :
such as linear autoregressive models and the nearestChanglng the nature of the observed output. In other

neighbor algorithm. We demonstrate the algorithms on a applications,h; could be a continuous state variable,
real-world data set and a simulated data set. The real-world modeling a slow progression of the system from a normal

data set consists of the intensity of arlV Hs laser. The laser state to a failed state [30] Because we assume that we
data set has been shown by other authors to exhibit low- do not know the output functio® or the hidden state

dimensional chaos with significant drops in intensity. The h t rel it to hel det . heth
simulated data set is generated from the Lorenz attractor '’ we cannot rely on It1o help us determine whether or

and has completely known statistical characteristics. On NOt the observeg; is anomalous. The problem that we
these data sets, we show the evolution of the estimatedaddress in this paper is to develop a method to discover

condition_al p_robability d.iStl’ibUtiOI'], the way it can_ actasa whether or not the current observed VaMerepresentS
prognostic signal, and its use as an early warning system. 4 anomaly based on the observed history of the system.
We also review a novel approach to perform Gaussian Several approaches have been developed in the litera-
Process Regression with large numbers of data points. . C

ture to address the problem of making future predictions
on systems that can be described by Equations 2,3 and
1. Traditional approaches include those developed in the
system identification community [16]. Other techniques
-ig_clude Hidden Markov Models, where the transitions

This paper addresses the problem of making predi X 1
tions of future events on systems that can be described¥§fveen thed hidden discrete states are modeled as
first-order hidden Markov process [25]. The HMM

low-dimensional dynamical equations. We assume tht for th i £ th |
we are given data from a data generating process that &g/ for the dynamics of the system to be modeled but
be functionally described by the following equations: requires that a procedure (such as clustering or learning

vector quantization) be used to develop a discrete rep-

I. INTRODUCTION

h;, = T(h;_,) (1) resentation of the system output. Other popular methods
x, = U(xi_,,hu) (2) to convert the time series into symbolic representations
v = Qx) 3) include Piecewise Aggregate Approximation (PAA) [10].

Once the symbolic representation is generated it can be
We assume that the functioii determining the evo- analyzed using the HMM. For many applications, the
lution of the hidden system stale, is unknown. We dwell time within a hidden state does not follow the
also assume that the functioh, which generates the exponential decay that arises from the standard HMM
observed output of the system is also unknown. Wagorithm. Dong and He [6] [7] have recently developed
assume that the vectat is an N dimensional state this method for analyzing systems with hidden discrete
vector, andx;_, is its history for the lastl time steps: transitions (as shown in Figure 1) using a hidden semi-
X5 1 = [Xt—d,Xt—d+1, -, X¢—1]. The quantityu, is the Markov model (HSMM) where the dwell time within a
observed system input, ang is the observed scalarstate is modeled by a Gaussian distribution. Their work
system output. We assume that the entire data thatsisows that the HSMM can lead to superior performance



on real-world applications compared with the standamabtained, the main challenge lies in forming a multiple-
HMM formulation. step-ahead prediction scheme, irrespective of the model
type. This is done by updating the model with the current
estimate of the output at each iteration and repeating the
predictor fork number of steps in the future.

The idea to predict future values as a linear combi-

nation of the preceding values was first introduced by

CO = UD Yule [39] as the auto-regressive process (AR). A compre-

hensive literature review on conventional techniques to
select a model that could be used to forecast the behavior

of the time has been provided by Weigend et al. [35]. In

this literature, the authors provide some good insight on

N @ local-linear model, global AR, MA, and ARMA model

and semi-local approach like Radial Basis Function

Fig. 1. This figure shows a finite state machine indicating aminl  (RBF) based model. K-nearest neighbor, a local average
path for progression from normal operation (clear circleshe failed model, is a widely used supervised algorithm where the
state (solid circle). The model allows for the system to mowenfr predicted instance is determined by the weighted average

a failed state back to normal operation, which models inteemitt . s .
problems that can arise in complex systems. For generality,ave h Of the outputs, those present in the training set, with

included bi-directional arrows and a fully connected graphmany  similar input vectors. Using different numbers of nearest
casest,_systems can only move into a failed state but not baakaah neighbors, it is possible to find the optimal valuekdir

operation. which the RMSE is minimized. McNames [22] presented

a new method of optimizing the model parameters in

order to minimize the multi-step cross validation error.

Il. BACKGROUND In previous work [22], the author proposed the adoption

of nearest trajectory model for time-series prediction.

A time Series 1s a coIIchon' of ob;e rvations "®Pr&his method is motivated to search the closest trajectory
sented sequentially as a function of time. One of the

S L . L [Points in the reconstructed state space as opposed to
major issues in time series analysis is to create mathe-

matical models that predict the system behavior fromr}iearest neighbors. A comparative study on different

set of observations. The approach taken in the machi fionparametric methods namely the nearest neighbors,

. . I BF and nearest trajectory methods to predict chaotic
learning community has been to create statistical mod%s

; X . me series can be found in [15]. The idea to obtain
that learn a mapping from inputs to outputs. This doefc, . . . - . .
iferative time-series predictions using regression tree

not require extensive knov_vledge of the physical sySterBfE\sed approach has been addressed by Badel et al [1].
In many cases, parametric models such as neural net-

works can produce high quality predictions [35]. The There is an increasing interest to investigate the
focus of the current study is restricted to the analysis @PPropriateness and adaptableness of global prediction
the time-series obtained from low dimensional nonlinedn€thods to model nonlinear dynamical systems. Among
dynamical system that might exhibit chaotic behavio@ll: neural networks is probably the most studied non-
The objective is to develop a prognostic model that cdipear function with input-output mapping capability. A
understand the dynamics of the system from the pagandard way is to use MLP, RBF architecture in order
observations and can forecast on how the system wodfi forecast time series with neural network. Several
evolve in the near future, within a certain predictiof€searchers have used hybrid predictors where the hybrid
horizon. In many cases the decomposition of the tinfteural network is a conjunction of global approximation
series into separate, simpler processes can be useful [#}d local approximation.

The simplest way to achieve this is to develop a model Recently, probabilistic Gaussian Process models have
that learns from the training set in order to obtain a goagghined a widespread popularity in the prognostic com-
estimate on the model parameters. Hence the first taskinity. Given any initial value of the input, any of these
is to adapt the knowledge about the model (to be derodels are intended to predict the distribution of future
veloped) from the historical dataset. This is followed bgpbservation, based on its past knowledge. Naturally it is
obtaining the information on the next predicted (modelesirable to have a quantitative analysis as a measure of
output conditioned over the current knowledge of th#he uncertainty associated with each model prediction on
developed model. Once the single-step prediction figture observations.

©)




A detailed review on various sources of uncertaintiefsiture value ofx; while the variance of this distribution
has been well documented by Draper [9]. In the presena®uld quantify the uncertainty in the predictions. As
of model and input uncertainties, Gaussian Processeghat uncertainty changes in time, it can be indicative of
Bayesian based approach, is considered to be the mastunanticipated change in the data generating process.
suitable technique where the predicted output can Béis change could be due to several issues, including
shown to be a weighted sum of the training data and céile movement of the hidden state from one state to
be associated with an “error bar” which defines a confanother.

dence interval on the given prediction. Earlier in 1996, For a true prognostic capability on low-dimensional
Neal [23] inferred that Gaussian Process (GP) mod&gstems, i.e., one where a forecast is made at a time
are equivalent to the neural networks with one hiddefyrizon significantly far in the future compared to the
layer with infinitely large number of hidden neuronspatural frequency of the system, we need the ability
Inspired by Neal's work, Rasmussen [26] first introducegh make long term predictions. Such predictions are
the empirical formulation of Gaussian Processes in terfigeoretically impossible for chaotic systems [24] if the
of probabilistic model using Bayesian treatment. Hgrediction horizon is on the same order as the Lyapunov
showed that simple matrix operations can be useful {gne. This quantity is the amount of time that is required
develop a noise model and define the prior distributiongr a volume of phase space to expand to a size that
over input variables. completely covers the underlying dynamic attractor.

Mackay [20] and Seeger [29] extended this research ©OThere are at least two ways to make predictions about
show the associations of GP model to several other POR: event in the future. One method is to make the

ular machine learning techniques like generalized Radr'FJ
Basis Functions (RBF), Spline smoothing technique a gr a fixed durationr in the future. Ifr is significantly

Support Vector Machines. GP can be defined as a rand?(mger than the natural period of the system as measured

fgqcﬂon such that the ,OUIpUt of the function, for By the low frequency modes in the Fourier spectrum of
finite number of input points, constructs a random vect e signal, such a model would make predictions that

which is normally distributed. GP is fully specified by itsare fixed in time; it would only make predictions for

mean function and covariance function. For zeros-me se events that are exactiyunits in the future. The

process, the latter plays the prime role to characterize @g%ond method is to generaterated predictionsvhich

process. Itis interesting to note that a covariance functigely on developing a model to estimaiy,|y;_,) and
t—1

looks more like a kernel fu_nction that maps simila_lr i_np%en feeding the output of the model back into the input,
data points to nearby neighborhood and the smﬂan%us producing an estimate @f(ys+ 1|, y;_,), where

is measured by the output of the function evaluatelgt is a statistic (such as the mean) computed from the

between any two input points. In statistical terms, th&istribution computed at time [28], [33]. This form of
kernel function calculates the covariance between ”i}%rated prediction is depicted in Figure 2

outputs corresponding to different inputs and the choice
of the covariance function typically depends on the prior

ediction in such a way that the estima®éy; - |y;_;)

assumption on the smoothness and continuity of the un
derlying function generated by a process. In other words
the covariance function can be an automatic choice tc ' Gaussan Frocess Pyt
characterize any process. Mathematically, a covarianc
function is termed valid if it produces a nonnegative
definite covariance matrix for a given set of input points.
Mackay [20] provided a detailed description on a wide Benmsiem Erasens
variety of covariance functions. Mocel viin P(,Vm| 257)
. M | yf’il;’ prl(teedr\?:{ieois P()’r‘)”:-l)
. MAIN IDEA

The key idea discussed in this paper is to build a

. . . . Fig. 2. The top panel in this figure shows a method for genayatin
predictive model that estimates given the history of predictions of the quantity”(y:|y;_,) using Gaussian Process re-

past observations. Rather than creating a single ’poifgession. The lower panel shows a method to do iterated picsic
estimate’ ofy,, we estimataD(yt\y;f 1)_ In this formu- Where a statistic such as the mean output of the model is fedibtck

lation the mean of this quantity (obtained by computintg}]1e model to generate the next output]

the expected value) will produce an estimate for the



IV. ALGORITHMS This method is related to Ensemble Methods in machine
We provide a brief overview of three algorithmgd€@ming and are widely used to estimate the mean and
that we use for estimating®(y|y:_,). The first two variance of the target distribution [34].
algorithms, the k-nearest neighbor and the bagged neu-
ral network algorithms, have been developed for many
applications and have been widely used in the litera-
ture [13]. These algorithms provide a benchmark fd¢. Gaussian Process Regression
comparison against the performance of the Gaussian
Process regression which has become popular in theéA Gaussian Process is a stochastic process such that
machine learning community over the last ten years. each finite subset of variables in the process is multivari-
ate Gaussian distributed [27]. In 1996, Neal [23] noted
. that the if the weights and biases in a neural network
A. K-Nearest Ne|ghpor . ) are drawn from a Gaussian distributed, as the number
The k-nearest neighbor uses all available input dafg higden units increases, the prior distribution over
X and associated output dgjauntil time ¢ to produce fnctions defined by such networks will converge to a
a prediction ofy;,. Specifically, in order to estimate g5yssjan Process. This important result lead the machine

P(yly;_1), given xi we identify the k vectors in |eaming community to research Gaussian Processes and
the data set that are closest to that vector in ternag nnort Vector Machines.

of the Euclidean distance. The mean of the outputs

. . . : Following the notation and derivation in Rassmussen
associated with thosk vectors is used as an estimate o‘fj1 nd Williams [27], Gaussian Process Regression is a
the expected value of the distributioB,p (P(y:|y;_;)) ¥ 9

and the variance of the outputs is used to estim eneralization of the standard linear regression model.

Varp(P(yly?_,)). This method does not attempt to 'e begin with a brief review of their Bayesian derivation

. ; . T )
summarize the data in any way and simply uses Oe]; linear regression with the modgi(x) = x“w with

simple ‘look-up’ table to estimate the parameters o"?dd'tlve Gaussian noise, we have:

the distribution. These estimates are based on heuristic fx) = x'w (6)
principles regarding the local distribution of data at time y = f(x)+en
t. '

en ~ N(0,02)

B. Bagged Neural Networks where x is the test vector andv is a set of weights.
(ﬁssuming that we choose a prior distribution for the

: : . weights as Gaussian with zero mean and covariance
developingN feedforward multi-layer perceptrons usin ) T . .
Pingh' yer p P trix ¥,, and that the noise is Gaussian and inde-

the available input and output data. Each model is ma d d identically distributed. with .
by taking a sample of data (with replacement) from thgen ent and Identica y Istri ute”, W.'t 'var'lanc%,
data set(X, ). If each network is labeled aS,(6;), we compute the posterior probability distribution of the

the overall estimate oEr(P(y:|y;_;)) is given by: weights given the dataY, y):

The bagged neural network [3] model consists

1
N P(w|X,y) = N( A" Xy, A™) (7)
* Un
Ep(P(yly;_) = Y Gi(%i, 0:) 4)
i=1 where A = L XX7 + 1. In order to make a pre-
The estimate of the variance in the prediction, an@iction, given a test inpuk, we compute the predictive
thus the associated uncertainty is given by distribution by averaging over the Welghtsand obtain:
o\~ 1
P(f(®)x,X,y) = N(

g2
Un

“T 4—1 T 4—1g
N A7 Xy, x" A7T'x) (8)

Varp(P(ylyi_1)) = Y_[Gi(Xi, 0:)—Ep(P(ylyi_1)))?

— where A = XX + %1, Using the so-called 'ker-

(5) nel trick’, we' obtain Gaussian Process Regression by
It is important to note that this estimate of the uncertainigssuming that we have a mappifdgx) that maps the
is a function of the heterogeneity of the data samplesiginal N dimensional data into a large, possibly infinite
X;. In the event that all samples are identical, the onl§imensional space. Replacing the independent variable
variation in the estimates will be due to variation ik with its transformed version leads to the following
the initial starting point of the optimization procedureposterior distribution:

4



the matrix inversion subroutine can get extremely time
- and memory intensive with very larg€. To handle this
P(f(2(x))|(®x),X,y) = issue, we have adopted the Gaussian process method
N NT A1 fm using V-formulation developed by Foster et. al [12].
N(%q)(x) AT Xy, ®(x) AT 0] (9) In the proposed technique, the low rank approxima-
tion of larger matrices is being calculated using partial
Cholesky factorization. In equation 10, thex n matrix
((I)(X)EP(I)(X)T) can be approximated by V7', where
then x m matrix V' is constructed by partial Cholesky
rE]ecomposition (PCD). These algebraic operations can be
summarized as follows,

This implies that the posterior distribution (egn. 9) isals
Gaussian, with the predicted megiix) and variance
&(x) for a given test inputx). It is not very difficult to
show that substituting the value of and doing some
simple matrix manipulations the predicted mean a
variance,in the feature space, can be expressed as

T PCD
,LAL(S() _ @(X)TZP(I)(X)T[O'ELI—F ‘I)(X)EP(I)(X)T]ily [(D(X)qu)(x,; ]n><nPC;> nxm-Vimxn (13)
(10) (@), (%) Jpxn = VpxmVinxn  (14)
Equation 10 can be rewritten as,
6(%) = o(%)'E,0(x) — ®(%)TS,0(x)[021

+8(x)Z,0(x)"] ' 0(x)5,2(%)  (11)

&) =vvTe2r + vty (15)

It is important to note that the full Gaussian Process Lemma 1:VT[o2 I+ VVT]! = [02 1+ VTV] VT
involves a two stage time complexity. The first one is
definitely the time required to learn the hyperparameters, _
those used while constructing the covariance function. "€ V formulation takes advantage of the above
The immediate objective is to estimate the vector dfMMa to reconstruct both equation 10 and 11. The
the hyperparameters and the noise term by maximiziggt@lS on the proof can be obtain in the following
the log-likelihood. Throughout this research a stationafjerature [12]. Using Lemma 1, one can rewrite equation
covariance function has been used and looks like: as,

AR = Vo2l + VTV VTy (16)
1 - (2 — 2)?
C(z,z') = 6) exp (2 > (xfl)) Equation 16 is the basis of V formulation. Instead
-1 of directly inverting then x n matrix [021 + VVT],

+ 62 +030;; (12) the algorithm address the inversion ofx m matrix
[021+VTV], uses the partial Cholesky factorization. For

. Whir?hez[el'e%,e?"al] ]ls thfe Ve(_’:ﬁr of hyperpararge—sma"erm' the regression algorithm with V formulation
ers of the covariance function. The parametirsan ils much faster and also numerically stable.

o; control the overall scale in vertical and horizonta
variations respectively. Heré, is the bias term and
630;; is the noise term wheré; is the variance of the V. LORENZDYNAMICS AND LASER DATA
noise ands;; is the Kronecker delta function. In order
to train the Gaussian Process, these hyperparameters ai@ this section we provide a small description on the
optimized based on the seen examples. This means tRat-infrared (FIR) laser system,the prime source of our
the hyperparameters can be optimized witft combi- experimental dataset, used in this research to test the
nations of seen examples, whem points are selected machine learning algorithms. It is very complicated to
from a pool ofn input points(m < n). As m increases develop an accurate physical model of the FIR laser
the computational complexity increases exponentiallgystem. However several researchers have shown the
A common way to compute the hyperparameter vectaonnection of the experimentally measured electric field
is to maximize the log-likelihood by taking the partialfrom N H; laser system to that of the dynamics of
derivatives with respect to the hyperparameters. Furthiesrenz's model [36]. The Lorenz’s equation, as proposed
details of the cost function and optimization algorithnby Hankel [14], can approximate the dynamical behavior
can be obtained in the following reference [20]. of the optically pumpedV H; single mode laser field.
The second factor is the inversion ofr2l + The equations for the Lorenz model can be expressed as
(I)(x)Zp@(x)T) which is an x n matrix and compiling follows,



Input: X (Input), t (target),C (Covariance Function)
Rpnae (Maximum rank)x (test input) andV.,
(Number of iterations).
Step 1: Randomly select a subsetf n input points
to train hyperparameters (whemne <n).
Step 2: Optimize hyperparameter vector
a) Initialize 6=[0,,62,03,07]
b) Compute covariance matri@ usingn
input points.
c) Compute low-rank approximation of
covariance matrix constructed in (b).
d) Construct log-arithmetic likelihood function.
e) Maximize cost function with respect to each
hyperparameter.
f) Obtain the optimized hyperparameter values
Step 3: Construct Model.
g) Redefine low-rank approximation of covar-
iance matrix using optimized hyperparamete
Step 4: Make Predictions
for k := 1 t0 Nyer
X = X;
h) Compute covariance matrix between test
points and active set.
i) Redefine low-rank approximation of
covariance matrix constructed in (g).
j) Compute and Storé'” predictive mean
and variance.
k) Updatex with k*" predicted mean.
end
Output: i(x) (Predicted mean);(x) (variance)

20+
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Fig. 4. This figure shows a three dimensional representaticheo
Lorenz attractor evolved with time. The integration time sie®.05
. second witho = 2, b = 0.25 andr = 15. Herew, v, w are the state
variables.

M&nalogous to the electric field intensity field of theH
laser system. The experimental dataset on the intensity
pulsation (figure 5), sampled at 12.5 MHz, has 25000
8-bit sample points obtained from an optically pumped
81.5-micron N H3 FIR laser. The data has a signal-to-
noise ratio of 300. Further details of the measurement
setup can be found in the literature by Huebner et al
[14]. and the dataset has been obtained from the Santa
Fe Time series competition. The Lorenz-like chaotic
patterns observed in the intensity pulsation of the laser
can be theoretically generated using Lorenz model with
the control parameters adjusteddo= 2, b = 0.25 and

r = 15.

Fig. 3. Steps of Iterative Gaussian Process Algorithm.

= —0c(u—v) a7)
v=—ulw—r)—"v (18)
w = uv — bw (19)

VI. APPLICATIONS TOMECHANICAL SYSTEMS

Built-in diagnostics and prognostics schemes, to inter-
rogate the condition of components or sub-components
of a system, has tremendous potential as this could
offer cost effective solution to improve performance
and reliability of these aging or newly designed com-
plex systems. Recent developments in systems health

The set of differential equations 19 describes a nomonitoring indicate that fault detection systems make

linear dynamical system and for certain values oof
b and r, the evaluation of the state vecto(s, v, w)

use of either passive type or active sensing devices
[5], [32], [37], [38], those connected in a discrete or

give rise to the famous Lorenz-like spiral chaos, knowoontinuous fashion. In most cases, these sensing devices

as Lorenz attractor. Figure(4) shows a typical three

dinonitors one or more state variables depending on the

mensional representation of the Lorenz attractor, numerature of the application and the outputs are typically a
ically simulated usingd’” order adaptive Runge-kuttaseries of signatures, a measure of different system states.
integration scheme. The state variables and the conttol structural applications, failure generally initiates i
parameters in the Lorenz equation are closely relateegions with high stress concentration which leads to

with the physical quantities of the laser physics. T

heomplex crack patterns within that material.Under the

details of these relationships and their interpretati@rs cinfluence of sufficiently large external energy, the nucle-

be found in the following literatures [14]. The absolu

teted crack might propagate until complete failure occurs.

square of the state variable)(at each time instant is These progressive damage could cause a change in the



dynamic characteristics and also reduce the strength 30
the structure, depending on the geometry and location

the fault. The dynamic response of the system is evi 25
more complex due to complicated stress wave patteri
material nonlinearity and the inherent nonlinearity asst
ciated with continuously evolving geometry.

Recent studies have revealed that techniques basec
the nonlinear manifestation of defects through generatir
of multiple harmonics are very promising for nonde
structive inspection. The history of nonlinear technique
for the NDE has been mentioned by Donskoy an
Bovsunovskii. Donskoy et al. [8] addressed the vibrc Sample points (time axis)
modulation technique that has been implemented in the o _ . . _
N-Scan damage detection system. This technique U2, = Th fowre represerc e tme stoy of e i
lized the effect of the nonlinear interaction of Ultrasonlgample points of the data (dark) has been used for trainingttaed
waves and vibrations at the interface of the defegest 500 points (light) for test purpose.

Bovsunovskii et al. [2], [21]investigated the resonance,

sub-, and super-resonance vibrations of an elastic body

with a crack, and presented analytical, numerical, arffodel is appropriately trained, it is possible to iterdgive
experimental results of a cracked body with one ddvedictg steps ahead in time for each test case, given the
gree of freedom. A simple analytical model has beeffry first sample point of the corresponding test case.
presented by Yamanaka et al. [17]-[19] to explain thé should be noted that, for a chaotic time series, the
interaction between crack planes using van der Wadfyecast ofg steps in future is restricted to certain pre-
interatomic force. This approach addressed the funddction horizon that can be calculated from Lyapunov's
mental problem regarding the detection of a closed cragkonent, if known. However to predict within this limit,
in ultrasonic testing. The paper proposes a new detectibds necessary to train the model such that it learns on
technique based on the subharmonic components whi§ underlying dynamics of the system from the scalar
is generated due to the nonlinear interaction of crag@pservations and the extraction of the dynamics can
surface and forcing function. However, he showed th&€ achieved by utilizing the time embedding technique.
under certain parametric condition, the vibration signaléccording to Taken's theorem [4], given a finite set
that represent the crack Opening disp|acement’ can @t_scalar Observations, it is pOSSible to reconstruct the
hibit chaotic behavior. Foong et al. [11] have showattractor in the phase space with an appropriate choice
that the response of nonlinear dynamical systems cghtime delay ¢) and embedding dimensioj. Given
have chaotic oscillation under fatigue crack growth.|d time seriese(t) of length IV, the delay vectorg(t)
vibration based or wave based approach, the outplf§h reassigned length o¥ — (D —1)7 data points can

of sensors are basically time series and analysis R represented as follows,

these signals are far more complicated than anticipated,

fqr rea[ life heter.ogeneo.us ;ystems. This circum_stancet,i(t) — [2(t)z(t+7)2(t+27)..x(t+(D—1)7)]T (20)
gives rise to an increasing interest to explore differen

time-series analysis on nonlinear chaotic systems. [need some feedback on how much to explain
on this topic. Some part of the results have been
illustrated in the conclusion section

—Training
---Test

200-

Intensity
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VIl. RESULT SECTION

Results are presented to demonstrate the applicability
of the iterative Gaussian process method to predict the
futuristic behavior of the experimental data, obtained The present study describes a methodology using
from N Hj laser system. In the first set of analysis, paGaussian process to study low dimensional dynamical
of the data (1200 sample points) has been assigned ébraotic systems. Prognostic algorithms are aimed not
training purpose as shown in figure 5. Three differemnly to forecast statements on the upcoming future
data segments, each of 500 sample points in lengtyents but also to generate warning signals,ahead in
have been arbitrarily chosen from the rest of the timtme, regarding any possible catastrophic failures if
series and have been assigned for test purpose. Onceahticipated with confidence. In this work, it has been

VIII. CONCLUSIONS
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Fig. 6. The normalized mean square error (NMSE) of predictiasm h Fig. 8.

been plotted for different values of rank (set to maximum rathig}
has been used to reconstruct the low rank approximation aftiteix
using partial Cholesky factorization. The maximum rank isteeg40
which is 10x dimension of the training set.
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Fig. 7.
observation and the modeled data. The straight line repiesbn
ideal case when the true observation has been plotted d@tsesThe
hollow and solid circles represent the pre-collapse and polapse
points (respectively), modeled using GP with V-formulati&mmilarly
hollow and solid squares correspond to pre-collapse antqoiapse
points (respectively), modeled using GP without V-formwati Note
that this is the same test case illustrated in figure 5.

TABLE |
THE TABLE REPRESENTS A QUALITATIVE COMPARISON OF

NORMALIZED MEAN SQUARE ERROR(NMSE) USING DIFFERENT
MODELS. THE RESULTS ARE BASED ONM50SAMPLE POINTS OF
TRUE AND MODELED OBSERVATIONS THE FIRST1200SAMPLE
POINTS SERVES AS TRAINING SET AND PREDICTIONS HAVE BEEN

DONE ON THREE SEPARATE TEST CASEEA, B, C). NOTE FOR

K-NN METHOD, THE VALUE OF K IS SET TO30.

The above figure represents the scatter plot of the tru

Test GP GP-V B NET K-NN

A (1201-1650)
B (2001-2450)
C (3201-3650)

0.1594 0.1095 02390 02574 A (1201-1650)
0.1820 0.0873 0.2862 0.2495 B (2001-2450)
0.1005 0.1246 0.1913 0.1985_C (3201-3650)
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Uncertainty
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The top image in this plot shows the true observation
(test vector) that has been predicted. The lower half of tgard
demonstrates the prognostic signal, a digitalized indighgt can be
generated prior to the true collapse. Both GP with and withéu
formulation is able to flag the forthcoming collapse event. eNibtat
this is the same test case illustrated in figure 5.
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Fig. 9. This figure represents the comparison based on curwilati
prediction errors resulting from different models. Cleatlghows that
both Gaussian process with and without V-formulation accatesl
less prediction error within a certain horizon, compared &ural
network and K nearest neighborhood with= 30. Note that this
is the same test case illustrated in figure 5.

TABLE Il
THE TABLE BELOW REPRESENTS THE PREDICTION HORIZON
RELATIVE TO THE START POINT, FOR DIFFERENT MODELS(FOR
CLARITY, WE INDICATE THAT THE PREDICTED HORIZON
CORRESPONDS TO THE SAMPLE POINT FOR WHICH CUMULATIVE
SQUARE ERROR 1< 1). NOTE FORK-NN METHOD, THE VALUE OF
KIS SET T030.

Test GP GP-V B NET K-NN
274 346 122 119
184 209 144 115
312 313 235 160




350 9GPV 5 a state-of-art that can generate a warning signal in the
— pre-collapse stage such that precautionary measures can
% 3001 © GP . i
2 be taken before the collapse occurs. The idea is based
g2 © on the fact that, given a trained process, the uncertainties
220 K associated with the prediction of a future (system) col-
g © lapse would intuitively be greater than predicting alike
215 ° . .

g 5 . collapse example from the subset of the historical data.
e 10 00, o Once the uncertainty associated with the forecast crosses
F 50 KL (144 certain threshold, the output is set to “high™ status,
0 ‘ ‘ ‘ indicating a probable collapse might occur. Fig. 8 shows
1 10° 10* 10° such a digitalized output and for different test casessgt ha

Number of training points been observed that the warning signal is set to “high™

Fig. 10. This figure addresses the computational issuesiatspavith much before the actual COHapse occurs, as shown in

Gaussian process with and without V-formulation. It can bensiat  Table 1ll. Hence there is an immense potential of using

the GP with V-formulation has a superior capability in handlboth  g,ch warning signals for prognosis purpose on real life

time and space complexities, particularly with larger tnragnpoints as . . .

shown in log scale. systems, specially where the historical data has some of
the examples with the associated collapse patterns.
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